Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A.
نویسندگان
چکیده
Mammalian translation initiation factor 4F (eIF4F) consists of three subunits, eIF4A, eIF4E, and eIF4G. eIF4G interacts directly with both eIF4A and eIF4E. The binding site for eIF4E is contained in the amino-terminal third of eIF4G, while the binding site for eIF4A was mapped to the carboxy-terminal third of the molecule. Here we show that human eIF4G possesses two separate eIF4A binding domains in the middle third (amino acids [aa] 478 to 883) and carboxy-terminal third (aa 884 to 1404) of the molecule. The amino acid sequence of the middle portion of eIF4G is well conserved between yeasts and humans. We show that mutations of conserved amino acid stretches in the middle domain abolish or reduce eIF4A binding as well as eIF3 binding. In addition, a separate and nonoverlapping eIF4A binding domain exists in the carboxy-terminal third (aa 1045 to 1404) of eIF4G, which is not present in yeast. The C-terminal two-thirds region (aa 457 to 1404) of eIF4G, containing both eIF4A binding sites, is required for stimulating translation. Neither one of the eIF4A binding domains alone activates translation. In contrast to eIF4G, human p97, a translation inhibitor with homology to eIF4G, binds eIF4A only through the amino-terminal proximal region, which is homologous to the middle domain of eIF4G.
منابع مشابه
Human Translation Initiation Factor eIF4G1 Possesses a Low-Affinity ATP Binding Site Facing the ATP-Binding Cleft of eIF4A in the eIF4G/eIF4A Complex
Eukaryotic translation initiation factor 4G (eIF4G) plays a crucial role in translation initiation, serving as a scaffolding protein binding several other initiation factors, other proteins, and RNA. Binding of eIF4G to the ATP-dependent RNA helicase eukaryotic translation initiation factor 4A (eIF4A) enhances the activity of eIF4A in solution and in crowded environments. Previously, this activ...
متن کاملA new translational regulator with homology to eukaryotic translation initiation factor 4G.
Translation initiation in eukaryotes is facilitated by the cap structure, m7GpppN (where N is any nucleotide). Eukaryotic translation initiation factor 4F (eIF4F) is a cap binding protein complex that consists of three subunits: eIF4A, eIF4E and eIF4G. eIF4G interacts directly with eIF4E and eIF4A. The binding site of eIF4E resides in the N-terminal third of eIF4G, while eIF4A and eIF3 binding ...
متن کاملMapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation.
Cap-dependent binding of mRNA to the 40 S ribosomal subunit during translational initiation requires the association of eukaryotic initiation factor 4G (eIF4G; formerly eIF-4 gamma and p220) with other initiation factors, notably eIF4E, eIF4A, and eIF3. Infection of cells by picornaviruses results in proteolytic cleavage of eIF4G and generation of a cap-independent translational state. Rhinovir...
متن کاملHuman eIF4E promotes mRNA restructuring by stimulating eIF4A helicase activity.
Elevated eukaryotic initiation factor 4E (eIF4E) levels frequently occur in a variety of human cancers. Overexpression of eIF4E promotes cellular transformation by selectively increasing the translation of proliferative and prosurvival mRNAs. These mRNAs possess highly structured 5'-UTRs that impede ribosome recruitment and scanning, yet the mechanism for how eIF4E abundance elevates their tran...
متن کاملStructural and functional similarities between the central eukaryotic initiation factor (eIF)4A-binding domain of mammalian eIF4G and the eIF4A-binding domain of yeast eIF4G.
The translation eukaryotic initiation factor (eIF)4G of the yeast Saccharomyces cerevisiae interacts with the RNA helicase eIF4A (a member of the DEAD-box protein family; where DEAD corresponds to Asp-Glu-Ala-Asp) through a C-terminal domain in eIF4G (amino acids 542-883). Mammalian eIF4G has two interaction domains for eIF4A, a central domain and a domain close to the C-terminus. This raises t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 17 12 شماره
صفحات -
تاریخ انتشار 1997